Specification

Model: 12V 2/10/20/30/40A

Model No: I-7015

Revision: 1.0

Table of Contents

- 1. INPUT REQUIREMENTS
- 1.1 INPUT VOLTAGE
- 1.2 INPUT FREQUENCY
- 1.3 INPUT POWER
- 1.4 INPUT PROTECTION
 - 1.4.1 INPUT CURRENT PROTECTION
- 1.5 EFFICIENCY
 - 2. OUTPUT REQUIREMENTS
- **2.1 MINIMUMM OUTPUT VOLTAGE**
- 2.2 REFERENCE CHARGING CURVE
- 2.3 MINIMUM CRANKING ASSIST OUTPUT VOLTAGE
- **2.4 OVER POWER PROTECTION**
- **2.5 SHORT CIRCUIT POTECTION**
 - 3. ENVIRONMENT
- 3.1 OPERATING / STORAGE TEMPERATURE
- 3.2 **HUMIDITY**
- 3.3 SHOCK AND VIBRATION
 - 3.3.1 SHOCK NON-OPERATION
 - 3.3.2 VIBRATION
- 3.4 CALCULATED MEAN TIME BETWEEN FAILURES (MTBF)
 - 4. SAFETY

4.1 DIELECTRIC VLOTAGE WITHSTAND (HI-POT)

- **4.2 PRODUCT DROP TEST**
- **4.3 BALL IMPACT TEST**
- 4.4 STRAIN RELIEF TEST
- 4.5 CLAMP ATTACHMENT SECURITY
- **4.6 HANDLE ATTACHMENT SECURITY**
- 4.7 CLAMP RETENTION
- **4.8 CORROSION RESISTANCE**
 - 5. EMC SPECIFICATION
- **5.1 EMI REQUIREMENTS**
 - 6. MECHANICAL
- **6.1 DIMENSION**
 - 6.1.1 PRODUCT
- **6.2 MATERIAL**
 - 6.2.1 ENCLOSURE
 - 6.2.2 CLAMP

6.3 INPUT CONNECTOR AND OUTPUT CABLE

- 6.3.1 INPUT CONNECTOR/AC CORD
- 6.3.2 OUTPUT CABLE:

1 INPUT REQUIREMENTS

1.1 INPUT VOLTAGE

The power supply must operate on a sinusoidal input voltage defined in table 1.

Input Range	Minimum	Nominal	Maximum	Unit
180~264	180	230	264	Vac

Table 1 - Input Voltage Range

1.2 INPUT FREQUENCY

The power supply shall operate within specification 50±3 Hz.

1.3 INPUT POWER

Continuous 685W, Engine Start 1350W.

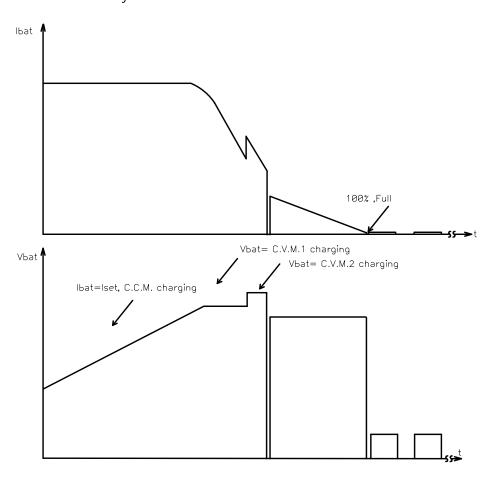
1.4 INPUT PROTECTION

1.4.1 INPUT CURRENT PROTECTION

A fuse with rating of $\underline{10}$ A / $\underline{250}$ V(Time Lag) shall be installed on the input line side near the input connector to provided protection to the power supply.

1.5 EFFICIENCY

The power supply efficiency shall not be less than 80% at the maximum load of section 2.2


2 OUTPUT REQUIREMENTS

2.1 MINIMUM OUTPUT VOLTAGE

	Rated Output Currrnt (A)	Minimum Output Voltage (V)
1	2	12.48
2	10	12.78
3	20	13.02
4	30	13.20
5	40	13.38

Table 2 – Minimum Output Voltage

2.2 REFERENCE CHARGING CURVE

2.3 MINIMUM CRANKING ASSIST OUTPUT VOLTAGE

Rated Output Currrnt (A)	Minimum Cranking Assist Output Voltage (V)
100	7.2

2.4 OVER POWER PROTECTION

Over power protection shall operate at <u>110% Max.</u> of rated power defined in section 2.2 at table-1 line input conditions.

2.5 SHORT CIRCUIT POTECTION

Power supply shall have self to protect against short conditions.

3 ENVIRONMENT

3.1 OPERATING / STORAGE TEMPERATURE

Operation: 0 to 40° C.

Storage: -20 to 80°C

3.2 HUMIDITY

Operation: 10% to 90% RH, non-condensation.

Storage: 5% to 95% RH, including condensation.

3.3 SHOCK AND VIBRATION

3.3.1 SHOCK NON-OPERATION

The unit shall be subjected to a series of six(6) shocks, one(1) on each side,

Top and bottom. Each shock shall consist of a 50G half sine wave pulse with

a velocity change of 167 in/sec.

3.3.2 VIBRATION

Operating: 10-250Hz, 0.25Gs peak to peak, 3 axes, 15 min sweep.

Non-Operation: 10-300Hz, 2.0Gs peak to peak, 3 axes, 15 min sweep.

3.4 CALCULATED MEAN TIME BETWEEN FAILURES (MTBF)

Power supply shall have a calculated MTBF of greater than <u>30,000</u> hours, calculated utilizing MIL-HDBK-217F with the following assumptions:

Input voltage: 230Vac / 50Hz

Output load: reference Table 2

Ambient temperature: 25 degrees C

4. SAFETY

Unless otherwise specified, the supply is designed to meet <u>IEC 60335 edition</u> and/or equivalent safety standards for use in Battery Charger Equipment. Specific agency certifications will be applied at customer's request and cost.

CB: IEC 60335 (under application)

4.1 DIELECTRIC VLOTAGE WITHSTAND (HI-POT)

The power supply shall withstand following Hi-pot test without breakdown.

4242 Vdc line to ground for 1 minute.

4242 Vdc input to output for 1 minute.

4.2 PRODUCT DROP TEST

Number of Drops: 3 times.

Height: 90 cm

Floor surface: Concrete Floor

Judging Criteria: To withstand Hi-Pot Test, and without electrical breakdown.

4.3 BALL IMPACT TEST

Ball Spec.: Steel Ball, Diameter=51.8 m/m, Weight=535 gw

Height of Drop : 90 cm

Number of Drops: 3 times.

Judging Criteria : To withstand Hi-Pot Test, and without electrical breakdown.

4.4 STRAIN RELIEF TEST

The strain relief withstand a pull force of 35 lb applied for 1 minute in a direction mostlikely to cause damage.

4.5 CLAMP ATTACHMENT SECURITY

Conductor is securely attached to clamp, conductor to clamp connection withstands a 35 lb tensile load without separation.

4.6 HANDLE ATTACHMENT SECURITY

Handle to enclosure connection withstands 4 times weight of the charger with separation.

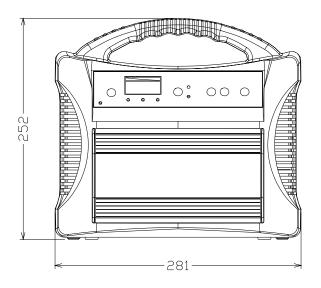
4.7 CLAMP RETENTION

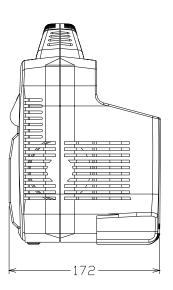
Clamp provides good terminal gripping capability. Clamp does not become dislodged from 5/8 inch diameter lead terminal post when pulled with a force of 10 lb at 90 degrees to the axis of the clamp.

4.8 CORROSION RESISTANCE

Clamp demonstrates no excessive surface corrosion after 12 hours exposure to 100% humidity 100°F.

5 EMC SPECIFICATION


5.1 EMI REQUIREMENTS


CE at system load.

6 MECHANICAL

6.1 DIMENSION

6.1.1 PRODUCT

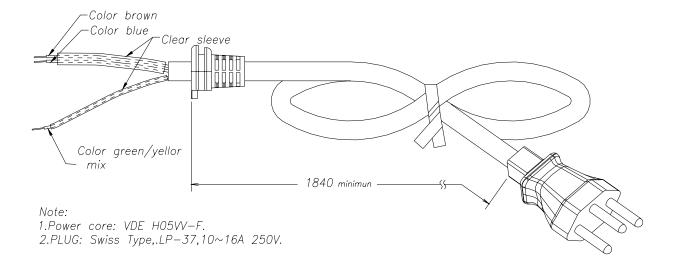
6.2 MATERIAL

6.2.1 ENCLOSURE

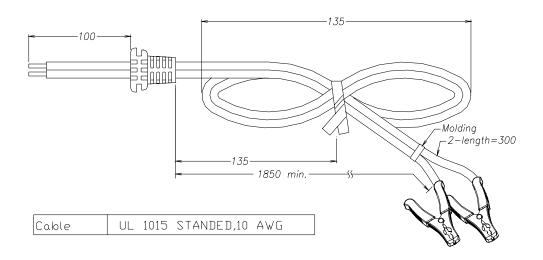
Housing – Plastic ABS UL 94-V0

Foot Pad – NBR Rubber

6.2.2 CLAMP


Clamp - SPCC, Nickel-plate

Clamp Spring – SUS-4


Handle - PVC

6.3 INPUT CONNECTOR AND OUTPUT CABLE

6.3.1 INPUT CONNECTOR

6.3.2 OUTPUT CABLE:

